
MTH 264 Introduction to Matrix Algebra - Summer 2023.

LN4A. The Eigenvalue Problem.

These lecture notes are mostly lifted from the text Matrix and Power Series, Lee and Scarborough, custom 5th

edition. This document highlights parts of the text that are used in the lecture sessions.

Definition 4A.1. Eigenvalues and Eigenvectors

Let A ∈ Rn×n. A non-zero vector v ∈ Rn is a eigenvector of A if and only if Av = λv for some scalar λ ∈ R.
The corresponding λ is called the eigenvalue corresponding to the eigenvector v. Conversely, we may say that

v is an eigenvector corresponding to λ. The eigenspace corresponding to the eigenvalue λ, typically denoted

Eλ0
, is given by

Eλ0
= {v ∈ Rn : Av = λ0v}

i.e. the collection of all eigenvectors corresponding to λ0 including the zero vector. The problem of finding

all eigenvalues and corresponding eigenvectors, or equivalently, a linearly independent spanning set of the

corresponding eigenspace, of A is called the eigenvalue problem.

Definition + Theorem 4A.2. Characteristic Equation determines Eigenvalues

Let A ∈ Rn×n. The characteristic polynomial of A is the polynomial in λ given by det(A − λIn). The

characteristic equation of A is the equation det(A− λIn) = 0. Then, λ0 is an eigenvalue of A if and only

if λ0 is root of the characteristic polynomial, i.e. λ0 satisfies det(A− λIn) = 0.

The algebraic multiplicity of λ0 is its multiplicity as a root of the characteristic polynomial. The

geometric multiplicity is the maximum cardinality of a linearly independent set of vectors in the eigenspace

Eλ0
corresponding to λ0. Note that the algebraic multiplicity of λ0 is ≥ the geometric multiplicity of λ0.

Observe that based on the characteristic polynomial definition, eigenvalues may be real numbers or complex

numbers. For this course, we will only focus on real eigenvalues. To find the real eigenvalues, recall the following

result from algebra.

Theorem 4A.3. Synthetic Division

Let p(x) be a polynomial of degree n with real number coefficients. Consider x− b for some b ∈ R. Then, there
exists a polynomial q(x) of degree (n− 1) and a scalar r ∈ R such that

p(x)

x− b
= q(x) +

r

x− b

Then, r = 0 if and only if x = b is a root of p(x). Polynomial long division can be used to find q(x) and r.

We can simulate polynomial long division of p(x) = anx
n + an−1x

n−1 + · · · + a1x1 + a0 with an ̸= 0 by

(x− b) using synthetic division, given below:

b an an−1 an−2 · · · a1 a0

b · qn−1 b · qn−2 · · · b · q1 b · q0 +

qn−1 qn−2 qn−3 · · · q0 r

with

qn−1 = an

qi−1 = ai + b · qi with i = n− 2, · · · , 0
r = a0 + b · q0

Then, q(x) is given by q(x) = qn−1x
n−1 + qn−2x

n−2 + · · ·+ q1x+ q0 and r is given as above.
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For a more detailed explanation, see Wikipedia: Synthetic Division.

If p(x) has integer coefficients, then possible roots can be found using the Rational Root Theorem. If

p(x) has a rational root x = k
l for relatively prime k, l ∈ Z, then k is an integer factor of the constant term a0

and l is an integer factor of the leading coefficient an.

Then, to finding eigenvectors and eigenspaces:

Theorem 4A.4. Finding Eigenvectors

Let A ∈ Rn×n. The eigenspace Eλ0 corresponding to a real eigenvalue λ0 is exactly the solution set of the

system (A−λ0In)x = 0. Without loss of generality, assume {x1, . . . , xk} is a set of free variables of the system.

Then, expressing the solution set as {x1v1 + · · ·+ xkvk : x1, . . . , xk ∈ R} for some v1, . . . ,vk ∈ Rn yields a

linearly independent spanning set of eigenvectors {v1, . . . ,vk} of Eλ0
.

Theorem 4A.5. Eigenvectors related to Distinct Eigenvalues

Let λ1, . . . , λk be distinct eigenvalues of A ∈ Rn×n. Let V = {v1, . . . ,vk} be a set in Rn such that vi is an

eigenvector corresponding to the eigenvalue λi. Then, V is linearly independent.

That is, eigenvectors corresponding to distinct eigenvalues form a linearly independent set.

Here are also some properties of eigenvalues and eigenvectors that may make our calculations easier.

Theorem 4A.6. Properties involving the Eigenvalue Problem

Let A ∈ Rn×n be a square matrix.

(a) Let k ∈ R be nonzero. Then, λ0 is an eigenvalue of A if and only if kλ0 is an eigenvalue of kA. Further-

more, the eigenspace Eλ0 of A is exactly the eigenspace Ekλ0 of kA, i.e. their respective eigenspaces

match.

(b) Assume A is triangular. Then, the diagonal elements of A are the eigenvalues of A.

(c) A is invertible if and only if A does not an eigenvalue of 0.

(d) Assume A is invertible. Then, λ0 is an eigenvalue of A if and only if λ−1
0 is an eigenvalue of A−1.

Furthermore, their respective eigenspaces match.

(e) Let A ∈ Rn×n. Then, λ0 is an eigenvalue of A if and only if λ0 is an eigenvalue of A⊤. However, their

respective eigenspaces generally do not match.

(f) Let A ∈ Rn×n and let k ∈ R be any scalar. Then, λ0 is an eigenvalue of A if and only if λ0 − k is an

eigenvalue of A− kIn. Furthermore, their respective eigenspaces match.

(g) Let k ∈ Z with n ≥ 0. If λ0 is an eigenvalue of A, then λk
0 is an eigenvalue of Ak.

One reason to care about eigenvectors is this:

Definition 4A.7. Diagonalizable Matrices

A A ∈ Rn×n is a diagonal matrix if all entries not on the main diagonal are zeros. That is, a matrix A is

diagonal if and only if it is both upper triangular and lower triangular.
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A matrix A ∈ Rn×n is diagonalizable if and only if there exists an invertible matrix B ∈ Rn×n and a

diagonal matrix D such that B−1AB = D.

Equivalently, a matrix A ∈ Rn×n is diagonalizable if and only if there exists a basis V = {v1, . . . , vn} of

Rn such that each vi is an eigenvalue of A. That is, the following equation is true:

 | | |
v1 v2 · · · vn

| | |


−1

A

 | | |
v1 v2 · · · vn

| | |

 =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn


with λi the eigenvalue corresponding to the eigenvector vi.

Then, we discuss a special family of matrices called symmetric matrices.

Definition 4A.8. Symmetric Matrices

Let A ∈ Rn×n. Then, A is symmetric if and only if A = A⊤.

Theorem 4A.9. The Eigenvalue Problem on Symmetric Matrices

Let A ∈ Rn×n be a symmetric matrix. Then,

(a) All eigenvalues of A are real.

(b) Eigenvectors corresponding to distinct eigenvalues are mutually orthogonal.

(c) There exists a set of n linearly independent set of eigenvectors. Furthermore, that set is pairwise

orthogonal. That is, the matrix A is diagonalizable.

Remark: The text uses the term “mutually orthogonal” for “pairwise orthogonal”.

Theorem 4A.10. Reflections and Orthogonal Projections on R3

Let A ∈ R3×3 be a left multiplication matrix for a reflection or orthogonal projection relative to a plane P

passing through the origin. Then, A is a symmetric matrix.
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